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Abstract
We show the way in which the self-consistent Ornstein–Zernike approach to
obtaining structure factors and thermodynamics for Hamiltonian models can
best be applied to two-dimensional systems such as monolayer films. We use
the nearest-neighbour lattice gas on a square lattice as an illustrative example.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The self-consistent Ornstein–Zernike approach (SCOZA) was introduced by Høye and
Stell [1] as an approximation method specifically tailored to obtain structure factors and
thermodynamics for Hamiltonian models in three or more spatial dimensions. It was
subsequently found by Høye and Borge [2] that the SCOZA yields extremely accurate results
for the two-dimensional lattice gas as well, when appropriately used, thus opening the way
toward the use of SCOZA in treating thin-film problems. In this article we summarize the
two-dimensional SCOZA results. We point out that these results for systems considered in
the thermodynamic limit are strikingly similar to the results that would be found in an exact
analysis of two-dimensional systems that are finite [3] or semi-infinite [4]. We note why this
is to be expected, and using the behaviour of the specific heat as a criterion, we find the size
of the finite and semi-infinite systems that yield the best match to the SCOZA results for the
infinite square lattice.

2. Background

The SCOZA is based on an ansatz used by Ornstein and Zernike (OZ) [5], which is that the
direct correlation function c(r) introduced by those authors has the range of the pair potential.
In the SCOZA, this ansatz is used along with a core condition that guarantees that the two-body
distribution function g(r) must be zero for values of r for which the pair potential is infinite.
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In a lattice gas, the core condition implies the exclusion of multiple occupancy of a single
lattice site or cell; for the equivalent Ising model in which the spin variable at site i is +1 or −1,
the corresponding condition is that 〈sisj 〉i=j = 1, which simply reflects the fact that the spin
must be pointing either up or down with probability one.

An analysis of the OZ formalism made by one of the authors some time ago [6] showed
that the core condition plus the assumption that c(r) is proportional to the pair potential implies
that for short-ranged potentials, a two-dimensional system cannot have a critical point at non-
zero temperature. (In three or more dimensions there is no such restriction on criticality.) One
knows, however, that in two dimensions, systems such as the nearest-neighbour lattice gas
do in fact have a critical point at non-zero Tc. Hence the SCOZA did not initially appear to
be a promising method for treating arbitrarily large two-dimensional systems. Its apparent
unsuitability is also consistent with the observation [6,7] that the assumption that c(r) has the
range of the potential implies that for short-ranged potentials, the critical exponent η = 0, with
the result that at a critical point at Tc �= 0, where one expects g(r) − 1 ≈ const/rd−2+η, the
SCOZA would yield g(r) − 1 ≈ const/rd−2. In three dimensions, in which η ≈ 0.03, and
d −2 +η ≈ 1.03, this leads to negligible error. But for d = 2, for which η = 1/4, it represents
the difference between g(r)−1 ≈ const/r1/4 and a g(r)−1 that does not appropriately decay
with increasing r .

However, as we shall see below, in two dimensions, the SCOZA results for a square lattice
of infinite extent are strikingly similar in some respects to exact results for either an N × N

lattice or an N × ∞ lattice, with N ≈ 22.
It is not hard to understand why the assumption of a c(r) for an infinite square lattice

yields results that mimic exact results for a finite system. For a finite system, c(r) is limited
in range by the finite boundaries of the system. One also knows that in an exact analysis of an
infinite one-dimensional system with short-ranged potential one finds no critical behaviour for
non-zero temperature. From these qualitative statements, however, it is not clear what values
of N in an N × N or N × ∞ lattice will give rise to exact results that most closely match
SCOZA results for an infinite square lattice. As we shall see in section 4, when one uses the
behaviour of the specific heat as a criterion, N turns out to be around 22.

3. Theory

In the following we consider the two-dimensional square lattice gas, which is isomorphic to
the two-dimensional Ising model. The potential between particles is

v(ri − rj) =




+∞ ri = rj

−w i, j nearest neighbours

0 otherwise.

(1)

For convenience w is scaled to be 1 in our calculations. In this convention the internal energy
per spin for the Ising model U is related to the internal energy per particle for the lattice gas u

via the following relation:

U = ρu + 1
2qρ − 1

8q (2)

where q is the number of nearest neighbours (q = 4 for the square lattice), and ρ is the density
for the lattice gas.

The SCOZA is based on the enforcement of thermodynamic consistency between different
routes to thermodynamics. This imposes the following relation:

∂(βχ−1)

∂β
= ∂2(ρu)

∂ρ2
(3)
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where β = 1/T , the inverse temperature, ρ−2χ is the isothermal compressibility, and u is
the internal energy per particle for the lattice gas. These quantities can be given in terms of
correlation functions through fluctuation theory, which yields

βχ−1 = 1

ρ(1 + ρh̃(0))
(4)

and through the ensemble average of the Hamiltonian, which yields

u = − 1
2qρg1 = − 1

2qρ(1 + h1) (5)

where h(r) ≡ g(r) − 1, and g(r) is the two-body distribution function. Here g1 and h1

represent the functional values of g(r) and h(r) at nearest-neighbour positions, and h̃(k) is
the Fourier transform of h(r), which is related to the direct correlation function c(r) by the
OZ equation:

h(ri) = c(ri) + ρ
∑

j

c(rj)h(ri − rj) (6)

or in the Fourier-transformed space:

1 + ρh̃(k) = 1

1 − ρc̃(k)
. (7)

The above relations are exact. In order to proceed we shall approximate the form of
the direct correlation function c(r) by using the ansatz introduced by OZ that c(r) has the
range of the pair potential. In the SCOZA this can be done by generalizing somewhat the
mean-spherical approximation (MSA), in which

c̃(k) = c0 + qc1�(k) (8)

where �(k) is the nearest-neighbour sum:

�(k) = cos kx + cos ky

2
for a square lattice (9)

and c0 and c1 are functions of (ρ, β). Equation (8) is the OZ ansatz applied to the lattice gas.
The MSA is the special case obtained by setting c1 = β and adjusting c0 to be compatible with
the core condition that assigns zero probability to multiple occupancy of a single site. In the
SCOZA, one instead adjusts c1 to ensure self-consistency between equations (4) and (5).

The core condition h(0) = −1 implies a relation between c0 and c1 through the OZ
equation:

1 − ρ =
∫

d2k

(2π)2

1

1 − ρc̃(k)
= 1

1 − ρc0

∫
d2k

(2π)2

1

1 − z�(k)
≡ P(z)

1 − ρc0
(10)

where z ≡ qρc1/(1 − ρc0). P(z) is the value for the lattice Green function P(z, r) at r = 0.
For a two-dimensional square lattice we have

P(z) = 2

π

∫ π/2

0

dϕ√
1 − z2 sin2 ϕ

= 2

π
K(z) (11)

where K(z) is the complete elliptic integral of the first kind. From equation (10) we have

c0 = 1

ρ

[
1 − P(z)

1 − ρ

]
(12)

and

c1 = zP (z)

qρ(1 − ρ)
. (13)
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By taking ri = 0 in equation (6), we get

−1 = h(0) = c0 − ρc0 + qρc1h1 (14)

so

h1 = − 1

qρc1
[1 + (1 − ρ)c0] = −1 − ρ

ρ

1 − P(z)

zP (z)
. (15)

After substitutions, equations (4) and (5) become

βχ−1 = (1 − z)P (z)

ρ(1 − ρ)
(16)

and

u = −1

2
q

(
ρ − (1 − ρ)

1 − P(z)

zP (z)

)
. (17)

From equation (16) we conclude that in the SCOZA the criticality, if any, occurs at z = 1,
since at the critical point one has χ−1 = 0, and we have P(z) > 0 for all z.

Finally, by applying the thermodynamic consistency via equation (3), we get the SCOZA
partial differential equation:

1

ρ(1 − ρ)

∂

∂β
[(1 − z)P (z)] = −q

2

∂2

∂ρ2

[
ρ(1 − ρ)

P (z) − 1

zP (z)

]
− q. (18)

The boundary conditions are z = 0, i.e., P(z) = 1, at β = 0 and ρ = 0, 1.

4. Specific results and discussion

Since for the two-dimensional square lattice P(z) diverges when z → 1, the renormalized
inverse-temperature parameter c1 also diverges. As a result, the SCOZA fails to predict a
true critical point above zero temperature in this case. Nevertheless, the SCOZA results for
u match the exact Onsager expression [4] for u remarkably well over the whole temperature
range. Instead of having an infinite slope at the exact critical temperature, the SCOZA slope
achieves its maximum at a temperature within a fraction of a percent of the exact value. The
non-singular but near-singular behaviour near the ideal transition temperature makes our results
strikingly similar to the exact results for a finite-size Ising model on a square lattice, N ×N [3],
or a finite-width strip, N × ∞ [4], for an N a bit greater than 20.

In figure 1 we plot the negative internal energy −U versus the inverse temperature β along
the critical isochore ρ = ρc = 1/2, i.e., magnetization being equal to 0, for the comparison
between SCOZA and both infinite- and finite-size Ising exact results. The comparison is made
even clearer by plotting their residuals in figure 2. We find that the deviations between the
SCOZA and the other results are very small over the whole temperature range. The deviations
get larger near the critical point β = βc, although the largest deviation is still within 3%. Com-
paring with finite-size and finite-width exact results, we find that this deviation gets minimized
when we choose N = 22 for an N × N Ising model or N = 21 for an N × ∞ Ising model.

In figure 3 we plot the specific heat versus β along the critical isochore. The SCOZA result
has a specific heat that stays finite at its maximum, as all the finite-size and finite-width specific
heats do in an exact theory. In this comparison we again find that the SCOZA infinite-lattice
result has a great resemblance to the 22×22 or 21×∞ Ising model. The SCOZA curve matches
well with the 21×∞ Ising model for β < βc. But for β > βc the SCOZA result has somewhat
less difference from the 22 × 22 solution. The maximum of the SCOZA curve occurs at
βSCOZA = 1.758, whereas the exact critical point for the infinite Ising model is βc = 1.763. The
maxima for the 22×22 and 21×∞ Ising models occur at β22×22 = 1.735 and β21×∞ = 1.764,
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Figure 1. Negative internal energy for the two-dimensional Ising model −U , versus the inverse
temperature β. The solid curve is the SCOZA result. Other curves are exact solutions for 22 × 22,
21×∞, and ∞×∞ Ising models, respectively. βc is the exact critical point for the ∞×∞ model.
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Figure 2. Residuals between the SCOZA and exact results. For optimal finite-size results, the
deviations are smaller than the ∞ × ∞ exact results.

(This figure is in colour only in the electronic version)

respectively. The deviations between these maximum temperatures and the exact critical
temperature is of the same order for the SCOZA and 21 × ∞ results, whereas it is a bit larger
for the 22 × 22 case. In this regard the SCOZA is a bit more similar to the 21 × ∞ model.
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Figure 3. Constant-volume specific heat CV for SCOZA compared with exact results. Note that
the specific heat for SCOZA does not diverge at its maximum, showing a resemblance to finite-size
models.

For each fixed value of ρ, we define the temperature where the specific heat is at its
maximum as the pseudo-singular temperature. Here we try to determine a ‘pseudo’-spinodal
curve by collecting the set of (ρ, T ) points that correspond to those pseudo-singularities. This
‘pseudo’-spinodal curve is shown in figure 4. Note that the points on the curve do not mark
real singularities, and both the specific heat and the compressibility remain finite, but very
large, at these points. Furthermore, near the pseudo-critical point ρ = ρc = 1/2, by defining
	ρ = ρ − ρc, 	T = Tc − T , we find

	ρ ∼ (	T )βspinodal (19)

with a classical exponent βspinodal = 1/2 when T < Tc.
From equations (7) and (8) we find that in the SCOZA the function 1 + ρh̃(k) has a form

proportional to the Fourier transform of the lattice Green function P(z, k). Hence we have
δ(r) + ρh(r) ∝ P(z, r). From the fact that

h(r) ∼ P(z, r) ∼ exp

(
−2r

√
1 − z

z

)
(20)

when r → ∞ [8], we find in the SCOZA the correlation length

ξ = 1

2

√
z

1 − z
. (21)

In figure 5 we plot the correlation length ξ versus temperature at the critical isochore. Since for
the two-dimensional SCOZA scheme z → 1 only when T → 0, the correlation length keeps
finite at the exact critical temperature Tc and only diverges when T → 0. However, when
T = Tc we have ξ 
 44 according to the SCOZA scheme, which already indicates strong
correlations. Furthermore, the correlation length increases sharply immediately below T = Tc.
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Figure 4. The pseudo-spinodal curve in the (T , ρ) plane, derived from the SCOZA. Near the
pseudo-critical point ρ = 1/2, there is the relation 	ρ ∼ (	T )βspinodal with βspinodal = 1/2.
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Figure 5. Correlation length ξ versus temperature from the SCOZA results. Note that ξ starts to
increase sharply for T 
 Tc.
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